Pup, a prokaryotic ubiquitin-like protein, is an intrinsically disordered protein.

نویسندگان

  • Shanhui Liao
  • Qiang Shang
  • Xuecheng Zhang
  • Jiahai Zhang
  • Chao Xu
  • Xiaoming Tu
چکیده

Pup (prokaryotic ubiquitin-like protein) from Mycobacterium tuberculosis is the first ubiquitin-like protein identified in non-eukaryotic cells. Although different ubiquitin-like proteins from eukaryotes share low sequence similarity, their 3D (three-dimensional) structures exhibit highly conserved typical ubiquitin-like folds. Interestingly, our studies reveal that Pup not only shares low sequence similarity, but also presents a totally distinguished structure compared with other ubiquitin-like superfamily proteins. Diverse structure predictions combined with CD and NMR spectroscopic studies all demonstrate that Pup is an intrinsically disordered protein. Moreover, 1H-15N NOE (nuclear Overhauser effect) data and CSI (chemical shift index) analyses indicate that there is a residual secondary structure at the C-terminus of Pup. In M. tuberculosis, Mpa (mycobacterium proteasomal ATPase) is the regulatory cap ATPase of the proteasome that interacts with Pup and brings the substrates to the proteasome for degradation. In the present paper, SPR (surface plasmon resonance) and NMR perturbation studies imply that the C-terminus of Pup, ranging from residues 30 to 59, binds to Mpa probably through a hydrophobic interface. In addition, phylogenetic analysis clearly shows that the Pup family belongs to a unique and divergent evolutionary branch, suggesting that it is the most ancient and deeply branched family among ubiquitin-like proteins. This might explain the structural distinction between Pup and other ubiquitin-like superfamily proteins.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prokaryotic ubiquitin-like protein provides a two-part degron to Mycobacterium proteasome substrates.

Prokaryotic ubiquitin-like protein (Pup) is a posttranslational modifier that targets proteins for degradation by the mycobacterial proteasome. We show that the disordered amino terminus of Pup is required for degradation, while the helical carboxyl terminus mediates its attachment to proteins. Thus, Pup has distinct regions that either interact with pupylation enzymes or initiate proteasomal d...

متن کامل

Caught in Action: Selecting Peptide Aptamers Against Intrinsically Disordered Proteins in Live Cells

Intrinsically disordered proteins (IDPs) or unstructured segments within proteins play an important role in cellular physiology and pathology. Low cellular concentration, multiple binding partners, frequent post-translational modifications and the presence of multiple conformations make it difficult to characterize IDP interactions in intact cells. We used peptide aptamers selected by using the...

متن کامل

Proteasomal protein degradation in Mycobacteria is dependent upon a prokaryotic ubiquitin-like protein.

The striking identification of an apparent proteasome core in Mycobacteria and allied actinomycetes suggested that additional elements of this otherwise strictly eukaryotic system for regulated protein degradation might be conserved. The genes encoding this prokaryotic proteasome are clustered in an operon with a short open reading frame that encodes a small protein of 64 amino acids resembling...

متن کامل

Allosteric transitions direct protein tagging by PafA, the prokaryotic ubiquitin-like protein (Pup) ligase.

Protein degradation via prokaryotic ubiquitin-like protein (Pup) tagging is conserved in bacteria belonging to the phyla Actinobacteria and Nitrospira. The physiological role of this novel proteolytic pathway is not yet clear, although in Mycobacterium tuberculosis, the world's most threatening bacterial pathogen, Pup tagging is important for virulence. PafA, the Pup ligase, couples ATP hydroly...

متن کامل

Ionic strength-dependent conformations of a ubiquitin-like small archaeal modifier protein (SAMP2) from Haloferax volcanii

Ubiquitin-like proteins play important roles in diverse biological processes. In this study, we present an unexpected finding that a ubiquitin-like small archaeal modifier protein (SAMP2) from Haloferax volcanii adopts two distinct states under low ionic condition. One of these is similar to the β-grasp structure conserved in ubiquitin-like proteins from eukaryotes; the other is disordered, lik...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 422 2  شماره 

صفحات  -

تاریخ انتشار 2009